Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747287

ABSTRACT

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Subject(s)
Angiopoietin-2 , Forkhead Box Protein O1 , Ion Channels , Lymphangiogenesis , Lymphedema , Receptor, TIE-1 , Signal Transduction , Ion Channels/metabolism , Ion Channels/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Humans , Animals , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Mice , Lymphangiogenesis/genetics , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics , Endothelial Cells/metabolism , Mechanotransduction, Cellular , ADAM17 Protein/metabolism , ADAM17 Protein/genetics
2.
Brain Behav ; 14(5): e3482, 2024 May.
Article in English | MEDLINE | ID: mdl-38715397

ABSTRACT

INTRODUCTION: Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS: We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS: Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION: This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.


Subject(s)
ADAM17 Protein , Prefrontal Cortex , Rats, Inbred Lew , Stress, Psychological , Animals , Male , Rats , ADAM17 Protein/metabolism , Behavior, Animal/physiology , Prefrontal Cortex/metabolism , Reflex, Startle/physiology , Stress, Psychological/physiopathology , Stress, Psychological/metabolism , Female
3.
BMC Pediatr ; 24(1): 285, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678170

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is a pediatric systemic vasculitis characterized by endothelial cell dysfunction. Semaphorin 7A (Sema7A) has been reported to regulate endothelial phenotypes associated with cardiovascular diseases, while its role in KD remains unknown. This study aims to investigate the effect of Sema7A on endothelial permeability and inflammatory response in KD conditions. METHODS: Blood samples were collected from 68 KD patients and 25 healthy children (HC). The levels of Sema7A and A Disintegrin and Metalloprotease 17 (ADAM17) in serum were measured by enzyme-linked immunosorbent assay (ELISA), and Sema7A expression in blood cells was analyzed by flow cytometry. Ex vivo monocytes were used for Sema7A shedding assays. In vitro human coronary artery endothelial cells (HCAECs) were cultured in KD sera and stimulated with Sema7A, and TNF-α, IL-1ß, IL-6, and IL-18 of HCAECs were measured by ELISA and qRT-PCR. HCAECs monolayer permeability was measured by FITC-dextran. RESULTS: The serum level of Sema7A was significantly higher in KD patients than in HC and correlated with disease severity. Monocytes were identified as one of the source of elevated serum Sema7A, which implicates a process of ADAM17-dependent shedding. Sera from KD patients induced upregulation of plexin C1 and integrin ß1 in HCAECs compared to sera from HC. Sema7A mediated the proinflammatory cytokine production of HCAECs in an integrin ß1-dependent manner, while both plexin C1 and integrin ß1 contributed to Sema7A-induced HCAEC hyperpermeability. CONCLUSIONS: Sema7A is involved in the progression of KD vasculitis by promoting endothelial permeability and inflammation through a plexin C1 and integrin ß1-dependent pathway. Sema7A may serve as a potential biomarker and therapeutic target in the prognosis and treatment of KD.


Subject(s)
Antigens, CD , Integrin beta1 , Mucocutaneous Lymph Node Syndrome , Receptors, Cell Surface , Semaphorins , Humans , Semaphorins/metabolism , Semaphorins/blood , Mucocutaneous Lymph Node Syndrome/metabolism , Mucocutaneous Lymph Node Syndrome/blood , Male , Female , Antigens, CD/metabolism , Integrin beta1/metabolism , Child, Preschool , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/blood , Case-Control Studies , Inflammation/metabolism , Infant , Nerve Tissue Proteins/metabolism , Endothelial Cells/metabolism , Child , Cells, Cultured , ADAM17 Protein/metabolism , Endothelium, Vascular/metabolism , Monocytes/metabolism , Capillary Permeability , GPI-Linked Proteins
4.
Cell Mol Life Sci ; 81(1): 163, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570362

ABSTRACT

Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.


Subject(s)
Carrier Proteins , Epstein-Barr Virus Infections , Animals , Humans , Mice , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Carrier Proteins/metabolism , Herpesvirus 4, Human , Major Histocompatibility Complex , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout
5.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673989

ABSTRACT

Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.


Subject(s)
ADAM17 Protein , Amyloid Precursor Protein Secretases , Proteolysis , c-Mer Tyrosine Kinase , Humans , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Intercellular Signaling Peptides and Proteins/metabolism , THP-1 Cells , Macrophages/metabolism , Protein S/metabolism , Monocytes/metabolism , Tetradecanoylphorbol Acetate/pharmacology
6.
Mol Brain ; 17(1): 21, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685105

ABSTRACT

Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aß/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aß pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aß plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aß pathology but not tau pathology in this mouse model of AD.


Subject(s)
ADAM17 Protein , Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Levodopa , Mice, Transgenic , Neuroinflammatory Diseases , tau Proteins , Animals , Levodopa/pharmacology , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , ADAM17 Protein/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Phosphorylation/drug effects , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Mice , Brain/pathology , Brain/drug effects , Brain/metabolism
7.
Pharmacol Res ; 203: 107142, 2024 May.
Article in English | MEDLINE | ID: mdl-38522759

ABSTRACT

ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinß1 and Integrinß3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinß by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinß through crosstalk between the Notch1 and Integrinß/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.


Subject(s)
ADAM17 Protein , Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Receptor, Notch1 , Sorafenib , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , Animals , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , ADAM17 Protein/metabolism , ADAM17 Protein/antagonists & inhibitors , Mice, Nude , Male , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Mice, Inbred BALB C , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , Mice
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397010

ABSTRACT

A wound healing model was developed to elucidate the role of mesenchymal-matrix-associated transglutaminase 2 (TG2) in keratinocyte re-epithelialisation. TG2 drives keratinocyte migratory responses by activation of disintegrin and metalloproteinase 17 (ADAM17). We demonstrate that epidermal growth factor (EGF) receptor ligand shedding leads to EGFR-transactivation and subsequent rapid keratinocyte migration on TG2-positive ECM. In contrast, keratinocyte migration was impaired in TG2 null conditions. We show that keratinocytes express the adhesion G-protein-coupled receptor, ADGRG1 (GPR56), which has been proposed as a TG2 receptor. Using ADAM17 activation as a readout and luciferase reporter assays, we demonstrate that TG2 activates GPR56. GPR56 activation by TG2 reached the same level as observed with an agonistic N-GPR56 antibody. The N-terminal GPR56 domain is required for TG2-regulated signalling response, as the constitutively active C-GPR56 receptor was not activated by TG2. Signalling required the C-terminal TG2 ß-barrel domains and involved RhoA-associated protein kinase (ROCK) and ADAM17 activation, which was blocked by specific inhibitors. Cell surface binding of TG2 to the N-terminal GPR56 domain is rapid and is associated with TG2 and GPR56 endocytosis. TG2 and GPR56 represent a ligand receptor pair causing RhoA and EGFR transactivation. Furthermore, we determined a binding constant for the interaction of human TG2 with N-GPR56 and show for the first time that only the calcium-enabled "open" TG2 conformation associates with N-GPR56.


Subject(s)
Protein Glutamine gamma Glutamyltransferase 2 , Receptors, G-Protein-Coupled , Humans , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , ErbB Receptors/metabolism , Ligands , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
9.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38409522

ABSTRACT

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Subject(s)
Carrier Proteins , Esophageal Neoplasms , Keratoderma, Palmoplantar , Humans , Mice , Animals , Phosphorylation , Carrier Proteins/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Signal Transduction/genetics , Mutation , Esophageal Neoplasms/genetics
10.
J Exp Clin Cancer Res ; 43(1): 59, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413999

ABSTRACT

BACKGROUND: Hematological metastasis has been recognized as a crucial factor contributing to the high rates of metastasis and mortality observed in colorectal cancer (CRC). Notably, exosomes derived from cancer cells participate in the formation of CRC pre-metastatic niches; however, the mechanisms underlying their effects are largely unknown. While our preliminary research revealed the role of exosome-derived disintegrin and metalloproteinase 17 (ADAM17) in the early stages of CRC metastasis, the role of exosomal ADAM17 in CRC hematogenous metastasis remains unclear. METHODS: In the present study, we isolated and purified exosomes using ultracentrifugation and identified exosomal proteins through quantitative mass spectrometry. In vitro, co-culture assays were conducted to evaluate the impact of exosomal ADAM17 on the permeability of the blood vessel endothelium. Vascular endothelial cell resistance, the cell index, membrane protein separation, flow cytometry, and immunofluorescence were employed to investigate the mechanisms underlying exosomal ADAM17-induced vascular permeability. Additionally, a mouse model was established to elucidate the role of exosomal ADAM17 in the modulation of blood vessel permeability and pre-metastatic niche formation in vivo. RESULTS: Our clinical data indicated that ADAM17 derived from the circulating exosomes of patients with CRC could serve as a blood-based biomarker for predicting metastasis. The CRC-derived exosomal ADAM17 targeted vascular endothelial cells, thus enhancing vascular permeability by influencing vascular endothelial cadherin cell membrane localization. Moreover, exosomal ADAM17 mediated the formation of a pre-metastatic niche in nude mice by inducing vascular leakage, thereby promoting CRC metastasis. Nonetheless, ADAM17 selective inhibitors effectively reduced CRC metastasis in vivo. CONCLUSIONS: Our results suggest that exosomal ADAM17 plays a pivotal role in the hematogenous metastasis of CRC. Thus, this protein may serve as a valuable blood-based biomarker and potential drug target for CRC metastasis intervention.


Subject(s)
Colorectal Neoplasms , Exosomes , MicroRNAs , Animals , Mice , Humans , MicroRNAs/metabolism , Endothelial Cells/metabolism , Capillary Permeability , Mice, Nude , Biomarkers/metabolism , Colorectal Neoplasms/pathology , Exosomes/metabolism , Cell Line, Tumor , Cell Proliferation , ADAM17 Protein/metabolism
11.
Dig Dis Sci ; 69(3): 821-834, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38172445

ABSTRACT

BACKGROUND: Glutamate-rich WD repeat containing 1 (GRWD1) is over-expressed in a variety of malignant tumors and is considered to be a potential oncogene. However, its mechanism of action in gastric cancer (GC) is still unclear. METHODS: Data analysis, Immunohistochemistry, and Western Blot (WB) were performed to verify the expression of GRWD1 in GC and para-cancerous tissues. The association between GRWD1 expression and tumor size, tissue differentiation, lymph node metastasis, TNM stage, and prognosis was analyzed according to the high and low expression levels of GRWD1. The relationship between GRWD1 and Notch pathway was verified by data analysis and WB. The effects of GRWD1 on the proliferation, migration, and invasion of GC cells were verified by cell proliferation, migration, and invasion assays. We confirmed that the high expression of GRWD1 promoted the proliferation of GC cells in vivo through the tumor formation assay in nude mice. RESULTS: The expression of GRWD1 was higher in GC tissues than in para-cancerous tissues, and its expression was positively correlated with tumor size, lymph node metastasis, and TNM stage, but negatively correlated with differentiation grade and prognosis. GRWD1 over-expression increased ADAM metallopeptidase domain 17 (ADAM17) expression and promoted Notch1 intracellular domain (NICD) release to promote GC cell proliferation, migration, and invasion in vitro. Results from animal studies have shown that high GRWD1 expression could promote GC cell proliferation in vivo by activating the Notch signaling pathway. CONCLUSION: GRWD1 promotes GC progression through ADAM17-dependent Notch signaling, and GRWD1 may be a novel tumor marker and therapeutic target.


Subject(s)
ADAM17 Protein , Carrier Proteins , Stomach Neoplasms , Animals , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , Mice, Nude , Neoplasm Invasiveness , Signal Transduction , Stomach Neoplasms/pathology , Up-Regulation , Carrier Proteins/metabolism , ADAM17 Protein/metabolism
12.
FEBS J ; 291(1): 10-24, 2024 01.
Article in English | MEDLINE | ID: mdl-37540030

ABSTRACT

The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.


Subject(s)
ADAM Proteins , Neoplasms , Humans , ADAM Proteins/metabolism , ADAM Proteins/therapeutic use , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Endopeptidases , Neoplasms/genetics , Neoplasms/drug therapy , Membrane Proteins/metabolism , Inflammation
13.
Am J Physiol Heart Circ Physiol ; 326(1): H270-H277, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37999645

ABSTRACT

Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Humans , Female , Endothelial Cells/metabolism , Receptor, Insulin/metabolism , Phosphatidylserines/metabolism , Neuraminidase/metabolism , Insulin/metabolism , Disintegrins , ADAM17 Protein/metabolism , Anoctamins/metabolism
14.
Brain Res Bull ; 204: 110804, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918697

ABSTRACT

Traumatic brain injury (TBI) is a global public health problem. As an important cause of secondary injury, cerebrovascular reaction can cause secondary bleeding, venous sinus thrombosis, and malignant brain swelling. Recent clinical studies have confirmed that intracranial venous return disorder is closely related to the prognosis of patients, yet the specific molecular mechanism involved in this process is still unclear. This study used an acute subdural hematoma (ASDH) model with cranial venous outflow obstruction (CVO) to explore how CVO aggravates the pathological process after TBI, especially for inflammation and tissue damage. The results suggest that intracranial venous return disorder exacerbates neurological deficits and brain edema in rats with ASDH by aggravating the destruction of endothelial cell tight junctions (TJs) proteins and promoting the expression of inflammatory factors, the activation of microglia and expression of recombinant A disintegrin and metalloprotease 17 (ADAM17) as well as the secretion of solTNF-α, a soluble form of tumor necrosis factor-alpha (TNFα), which in turn increase IκB-α ((inhibitor of the transcription factor nuclear factor-κB) and NF-κB p65. Our study revealed a molecular basis of how CVO aggravates inflammation and tissue damage.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Rats , Humans , Animals , NF-kappa B/metabolism , Neuroinflammatory Diseases , Signal Transduction , Rats, Sprague-Dawley , Brain Injuries, Traumatic/metabolism , Inflammation/metabolism , Brain Edema/metabolism , Microglia/metabolism , ADAM17 Protein/metabolism
15.
ACS Chem Neurosci ; 14(20): 3818-3825, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37802503

ABSTRACT

ADAM 17, a disintegrin and metalloproteinase 17 belonging to the adamalysin protein family, is a Zn2+-dependent type-I transmembrane α-secretase protein. As a major sheddase, ADAM 17 acts as an indispensable regulator of chief cellular events and controls diverse cytokines, adhesion molecules, and growth factors. The signal peptide (residues 1-17) of ADAM 17 targets the protein to the secretory pathway and gets cleaved off afterward. No other function is documented for the ADAM 17 signal peptide (ADAM 17-SP) inside the cells. Here, we have taken a reductionist approach to understand the biophysical properties of ADAM 17-SP. Aiming to understand the possibility of aggregation, we found several aggregation-prone segments in the signal peptide. We performed in vitro experiments to show that the signal peptide forms amyloid-like aggregates in buffered conditions. We also studied its aggregation in the presence of sodium tripolyphosphate and heparin to correlate with the cellular conditions, as these biomolecules are naturally present inside cells. Further, we performed seeding experiments to observe the possibility of ADAM 17-SP aggregate interaction with the Aß42 peptide. The results suggest that its seeds escalate the aggregation kinetics of the Aß42 peptide and form heteromeric aggregates with it. We believe this finding could further intensify the aggregation studies on other signal peptides and shed light on the potential role of these segments other than signaling.


Subject(s)
Amyloid beta-Peptides , Protein Sorting Signals , Amyloid beta-Peptides/metabolism , ADAM17 Protein/metabolism , Peptide Fragments/metabolism , Amyloid/metabolism , Amyloidogenic Proteins , Membrane Proteins
16.
Proc Natl Acad Sci U S A ; 120(33): e2303155120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37561786

ABSTRACT

Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.


Subject(s)
Cytomegalovirus , Tumor Necrosis Factor-alpha , Humans , Cytomegalovirus/physiology , Tumor Necrosis Factor-alpha/metabolism , Proteome/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Proteomics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cytokines/metabolism , Cell Membrane/metabolism , Metalloproteases/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Membrane Glycoproteins/metabolism , Viral Proteins/metabolism
17.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37282854

ABSTRACT

Tylosis with oesophageal cancer (TOC) is a rare familial disorder caused by cytoplasmic mutations in inactive rhomboid 2 (iRhom2 or iR2, encoded by Rhbdf2). iR2 and the related iRhom1 (or iR1, encoded by Rhbdf1) are key regulators of the membrane-anchored metalloprotease ADAM17, which is required for activating EGFR ligands and for releasing pro-inflammatory cytokines such as TNFα (or TNF). A cytoplasmic deletion in iR2, including the TOC site, leads to curly coat or bare skin (cub) in mice, whereas a knock-in TOC mutation (toc) causes less severe alopecia and wavy fur. The abnormal skin and hair phenotypes of iR2cub/cub and iR2toc/toc mice depend on amphiregulin (Areg) and Adam17, as loss of one allele of either gene rescues the fur phenotypes. Remarkably, we found that iR1-/- iR2cub/cub mice survived, despite a lack of mature ADAM17, whereas iR2cub/cub Adam17-/- mice died perinatally, suggesting that the iR2cub gain-of-function mutation requires the presence of ADAM17, but not its catalytic activity. The iR2toc mutation did not substantially reduce the levels of mature ADAM17, but instead affected its function in a substrate-selective manner. Our findings provide new insights into the role of the cytoplasmic domain of iR2 in vivo, with implications for the treatment of TOC patients.


Subject(s)
Keratoderma, Palmoplantar, Diffuse , Keratoderma, Palmoplantar , Neoplasms , Animals , Mice , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Carrier Proteins/genetics , Keratoderma, Palmoplantar/genetics , Membrane Proteins/genetics
18.
Medicina (Kaunas) ; 59(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37374349

ABSTRACT

Objective: In the present study, we investigated the expression of CD56, ADAM17 and FGF21 antibodies (Ab), which we think have an effect on the pathophysiology of preeclampsia (PE), in pregnant patients with healthy placentas and placentas with PE. The expression of these antibodies has been investigated in a limited amount of former research, but their role in PE has not yet been clarified. With this study, we aimed to contribute to the elucidation of the pathophysiology of PE and the detection of new target molecules for treatment. Materials and Methods: Parturients with singleton pregnancy at 32 weeks or above without any maternal or fetal pathology who were admitted to the Department of Obstetrics and Gynecology, Zonguldak Bülent Ecevit University Practice and Research Hospital between 11 January 2020 and 7 January 2022 were included in the present study. Pregnant women with coexisting disease or a pathology related to the placenta (ablation placenta, vasa previa, hemangioma, etc.) were excluded. CD56, ADAM17 and FGF21 antibodies were histopathologically and immunohistochemically detected in 60 placentas with PE (study group) and 43 healthy placentas (control group). Results: CD56, ADAM17 and FGF21 proteins were all more intensely expressed in preeclamptic placentas and a statistically significant difference was found between the two groups for all three antibodies (p < 0.001). Deciduitis, perivillous fibrin deposition, intervillous fibrin, intervillous hemorrhage, infarct, calcification, laminar necrosis and syncytial node were found to be significantly more common in the study group (p < 0.001). Conclusions: We observed that CD56, ADAM17 and FGF21 expressions increased in preeclamptic placentas. These Ab may be responsible for the pathogenesis of PE, which can be illuminated with further studies.


Subject(s)
ADAM17 Protein , CD56 Antigen , Fibroblast Growth Factors , Pre-Eclampsia , Female , Humans , Pregnancy , ADAM17 Protein/metabolism , Antibodies , Fibroblast Growth Factors/metabolism , Placenta , Pre-Eclampsia/metabolism , CD56 Antigen/metabolism
19.
Biomater Adv ; 152: 213516, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348330

ABSTRACT

In the lung, pulmonary epithelial cells undergo mechanical stretching during ventilation. The associated cellular mechanoresponse is still poorly understood at the molecular level. Here, we demonstrate that activation of the mechanosensitive cation channel Piezo1 in a human epithelial cell line (H441) and in primary human lung epithelial cells induces the proteolytic activity of the metalloproteinases ADAM10 and ADAM17 at the plasma membrane. These ADAMs are known to convert cell surface expressed proteins into soluble and thereby play major roles in proliferation, barrier regulation and inflammation. We observed that chemical activation of Piezo1 promotes cleavage of substrates that are specific for either ADAM10 or ADAM17. Activation of Piezo1 also induced the synthesis and ADAM10/17-dependent release of the growth factor amphiregulin (AREG). In addition, junctional adhesion molecule A (JAM-A) was shed in an ADAM10/17-dependent manner resulting in a reduction of cell contacts. Stretching experiments combined with Piezo1 knockdown further demonstrated that mechanical activation promotes shedding via Piezo1. Most importantly, high pressure ventilation of murine lungs increased AREG and JAM-A release into the alveolar space, which was reduced by a Piezo1 inhibitor. Our study provides a novel link between stretch-induced Piezo1 activation and the activation of ADAM10 and ADAM17 in lung epithelium. This may help to understand acute respiratory distress syndrome (ARDS) which is induced by ventilation stress and goes along with perturbed epithelial permeability and release of growth factors.


Subject(s)
Amyloid Precursor Protein Secretases , Lung , Humans , Mice , Animals , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Lung/metabolism , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Epithelial Cells/metabolism , Ion Channels/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Metalloproteases/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism
20.
J Biochem Mol Toxicol ; 37(11): e23450, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37352135

ABSTRACT

Benign prostatic hyperplasia (BPH) is one of the most prevalent clinical disorders in the elderly. Probenecid (Prob) is a well-known FDA-approved therapy for gout owing to its uricosuric effect. The present study evaluated the use of Prob for BPH as a COX-2 inhibitor. Prob (100 and 200 mg/kg) was intraperitoneally injected into male Wistar rats daily for 3 weeks. In the second week, testosterone (3 mg/kg) was subcutaneously injected to induce BPH. Compared with BPH-induced rats, Prob treatment reduced prostate weight and index and improved histopathological architecture. The protease activity of ADAM-17/TACE and its ligands (TGF-α and TNF-α) were regulated by prob, which in turn abolished EGFR phosphorylation, and several inflammatory mediators (COX-2, PGE2, NF-κB (p65), and IL-6) were suppressed. By reducing the nuclear import of extracellular regulated kinase protein 1/2 (ERK1/2), Prob helped re-establish the usual equilibrium between antiapoptotic proteins like Bcl-2 and cyclin D1 and proapoptotic proteins like Bax. All of these data point to Prob as a promising treatment for BPH because of its ability to inhibit COX-2-syntheiszed PGE2 and control the ADAM-17/TGF-α-induced EGFR/ERK1/2 signaling cascade. These findings might help to repurpose Prob for the treatment of BPH.


Subject(s)
Prostatic Hyperplasia , Testosterone , Humans , Rats , Male , Animals , Aged , Testosterone/adverse effects , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Probenecid/adverse effects , Dinoprostone/metabolism , Transforming Growth Factor alpha/adverse effects , Transforming Growth Factor alpha/metabolism , ADAM17 Protein/metabolism , Cyclooxygenase 2/metabolism , MAP Kinase Signaling System , Rats, Sprague-Dawley , Rats, Wistar , ErbB Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...